Найдите площадь трапеции, диагонали которой равны 3 и 4, а средняя линия равна 2,5.

0 голосов
54 просмотров

Найдите площадь трапеции, диагонали которой равны 3 и 4, а средняя линия равна 2,5.


Геометрия (26 баллов) | 54 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

АВСД - трапеция, АС=3 ,  ВД=4 ,  средняя линия =2,5
 Проведём из т.С прямую СМ║ВД  (точка М - точка пересечения СМ и АД)
ВСМД - параллелограмм  ⇒  ВС=ДМ=3 , ВД=СМ=4 .
Так как средн. линия = 2,5  , то 2,5=(АД+ВС):2  ⇒  АД+ВС=2·2,5=5
АМ=АД+ДМ=АД+ВС=5
ΔАСМ имеет площадь ,равную площади трапеции, так как
S(трапеции)=(АВ+ВС)/2 ·h = 1/2·AM·h  (h - высота трапеции СН)
S(ΔАСМ)=1/2·АМ·h  (h - высота ΔАСМ = высоте трапеции СН)
Найдём площадь ΔАСМ, заметив, что он прямоугольный, так как
АМ=5, а  √(АС²+СМ²)=√(3²+4²)=√25=5, то есть выполняются условия теоремы Пифагора:  АМ²=АС²+СМ² .
S(ΔАСМ)=1/2·АС·СМ=1/2·3·4=6  ⇒  S(АВСД)=6

P.S.  Если бы ΔАСМ не оказался прямоугольным, то его площадь можно было бы найти по формуле Герона, т.к. все его стороны оказались известными.

БОГ (840k баллов)
10,984,878 вопросов
13,471,016 ответов
8,518,553 комментариев
4,909,216 пользователей